Transcriptome profiling of the mangrove plant Bruguiera gymnorhiza and identification of salt tolerance genes by Agrobacterium functional screening.

نویسندگان

  • Takuya Yamanaka
  • Masashi Miyama
  • Yuichi Tada
چکیده

To identify key genes in the regulation of salt tolerance in the mangrove plant Bruguiera gymnorhiza, transcriptome profiling in the lateral and main roots under conditions of salt stress was performed. Statistical analysis revealed that 175 and 403 of 11,997 genes shoewd significantly increased high expression in the lateral and main roots respectively. One hundred and sixty genes were up-regulated in both types of roots in the early time period, 1 to 12 h after salt treatment. Expression vectors for 28 selected salt responsive genes were constructed and transformed in Agrobacterium tumefaciens, and then screened for salt tolerance. A. tumefaciens transformed with genes for lipid transfer, zinc finger, and ankyrin repeat proteins showed enhanced salt tolerance. Transgenic Arabidopsis plants expressing these three genes also exhibited increased tolerance to NaCl. These results indicate that Agrobacterium functional screening is an effective supplemental method of pre-screening genes involved in abiotic stress tolerance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proteomic analysis of salt-responsive proteins in the mangrove plant, Bruguiera gymnorhiza.

To identify key proteins in the regulation of salt tolerance in the mangrove plant Bruguiera gymnorhiza, proteome analysis of samples grown under conditions of salt stress was performed. Comparative two-dimensional electrophoresis revealed that two, three and one protein were differentially expressed in the main root, lateral root and leaf, respectively, in response to salt stress. Among these,...

متن کامل

Network-based transcriptome analysis in salt tolerant and salt sensitive maize (Zea mays L.) genotypes

Identification of genes involved in salinity stress tolerance provides deeper insight into molecular mechanisms underlying salinity tolerance in maize. The present study was conducted in the faculty of agriculture of Urmia university, Iran, in 2018, with the aim of identifying genetic differences between two maize genotypes in tolerance to salinity stress, and the results of gene expression wer...

متن کامل

Transcriptome Characterization and Sequencing-Based Identification of Salt-Responsive Genes in Millettia pinnata, a Semi-Mangrove Plant

Semi-mangroves form a group of transitional species between glycophytes and halophytes, and hold unique potential for learning molecular mechanisms underlying plant salt tolerance. Millettia pinnata is a semi-mangrove plant that can survive a wide range of saline conditions in the absence of specialized morphological and physiological traits. By employing the Illumina sequencing platform, we ge...

متن کامل

Comparative expression profiling of four salt-inducible genes from Aeluropus littoralis

Abiotic stresses such as salinity influence agricultural production. Plants generally respond to stimulus conditions in a complex manner involving many genes and proteins. In the evolution process, halophyte plant Aeluropus littoralis has been proven to have abiotic stress-tolerance capacity. A. littoralis is a salt-resistant halophyte providing a wealthy genetic resource for developing salinit...

متن کامل

The optimization of gene transfer to tomato and the study of expression possibility of salt-tolerance gene (SOS3)

One of the main strategies to improve plant tolerance is the expression of stress-induced genes, which play a significant role in the ionic balance of plants. SOS3 is one of the important components of SOS-regulated ionic homeostasis pathway. Therefore, the expression of this gene could be an important step towards producing salt-resistant plants. In this work, we have transformed tomato (Solan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioscience, biotechnology, and biochemistry

دوره 73 2  شماره 

صفحات  -

تاریخ انتشار 2009